有別于傳統(tǒng)的地上式污水處理廠,地埋式污水處理廠將污水處理的主要構筑物全部或多數(shù)集中在一個構筑物箱體內,埋設在地下,占地面積大大縮小,對周邊環(huán)境的影響較小,同時因為地下的恒溫使得其污水處理效果受外界環(huán)境影響較小,但是也具有建設成本高、運營管理難度和成本高等缺點。
一、污水處理廠建設方案選型
污水處理廠主要目的是處理污水中的有機物和濁度,達到更好的出水水質才是根本,在污水處理廠的選型上,需要因地制宜,結合廠址位置、地質條件、整體規(guī)劃以及地形地貌和遠期規(guī)劃進行考慮。
從土地資源利用方面考慮,地埋式污水處理廠在城市中心,或者土地資源緊缺的地方,而在一些中小城市、偏遠地區(qū)就沒有太大的必要性。再者地埋式污水處理廠具有噪音和臭味污染小特點,而且頂面均作景觀綠化處理,可以建設成為居民休閑鍛煉的場所,因此在人員密集區(qū)附近建設的污水廠宜采用地埋式設計。此外地埋式污水處理廠埋設與地下,水處理構筑物內溫度較為恒定,污水處理的效果不容易受到環(huán)境因素的影響,在北方冬季氣溫較低地區(qū)應用較好。還有地埋式污水處理廠采光通風要求較高,建設投入和運營成本都很高,運營期間設備故障率較高,在半地埋式與全地埋式比較起來,半地埋式操作層可采取自然采光、自然通風,對機械通風和采光需求較小,同時又具有地埋式的特點,投資和運營成本都相對較小,更具有優(yōu)勢。
從地形地貌和城市規(guī)劃考慮,污水處理廠的設計同時應請園林景觀參與規(guī)劃,結合建設地面的現(xiàn)場地形地貌、將來的規(guī)劃來確定是否采用地埋式,以及是采用半地埋式還是全地埋式。
從地質條件考慮,采用地埋式污水處理廠一般都需要進行支護設計、地質條件決定了支護設計的難度和安全風險,施工難度和風險因素也應充分考慮,如果地質條件較差,常年雨水量較大的地區(qū)不適宜采用全地埋式污水處理廠,而應采用半地埋式設計,至于很多人考慮的操作層廠房露出地面的部分可以通過景觀的藝術處理進行亮化。
此外由于地埋式污水處理廠集中在地下,因此其后期改造升級難度就非常大,處理能力和出水水質很難提升,因此在確定地埋式方案時,應予以考慮,必要時應預估國家標準的提高的可能性,在設計時提前考慮,避免后期國家規(guī)范標注提高后無法達標運行。
二、地埋式污水處理廠設計
地埋式污水處理廠工藝選型目前一般采用MBR型和傳統(tǒng)A2O,或者是A2O+生物曝氣濾池,或是前兩者結合。
在工藝選型方面應充分考慮進水水質和排放標準,同時結合各大污水處理廠的云因監(jiān)測數(shù)據分析,利用大數(shù)據分析,來確定工藝選型;同時還應考慮用地條件,一般地埋式污水處理廠占地都較小,為了進一步分減少占地,縮短工藝流程尤為重要,同時便于設計布置,因此國內大量的地埋式污水處理廠采用MBR工藝,具有工藝流程短,出水水質好等特點,但同時具有建設、運營成本高的特點,因此也有很多大型地埋式污水處理廠還是選用A2O工藝;這需要綜合比擬,同時還應結合業(yè)主的管理水平并參考業(yè)主方的意見進行確定。
地埋式污水處理廠設計中目前存在兩大問題,一是缺少地埋式污水處理廠的通風規(guī)范標準。由于地埋式污水處理廠構筑物全部或大多數(shù)集中在地下封閉空間,需要充分考慮人工照明和機械通風,但目前通風無地埋式污水處理廠國家標準,設計上一般參考民用建筑標準,通過已建成污水處理廠來看,很多廠通風效果還是略差,易出現(xiàn)安全事故;二是消防設計缺少地埋式污水處理廠標準,按照民用地下建筑規(guī)范一般消防分區(qū)不大于1000㎡,依據地下車庫標準一般不大于4000㎡,但需要設計噴淋設施,目前有些地區(qū)消防管控嚴格地按前者設計,有些地區(qū)采用2000㎡左右的方案,但即使是這樣,依然會導致操作層被分割的非常密集,運營管理難度大。在設計中應做好地方政府、消防部門的協(xié)調個工作,最好是能根據工藝單體進行劃分。
三、地埋式污水處理廠施工
地埋式污水處理廠施工有別于傳統(tǒng)的地上式污水處理廠,在施工方面具有以下特點:
(1)地埋式污水處理廠占地面積小,一般只有傳統(tǒng)污水處理廠的1/3,然而這也給施工帶來了很大的難度,除去深基坑,地上可以利用的空間十分有限,材料的儲備、加工、廠內運輸難度都非常大。
以合肥市清溪凈水廠為例,清溪凈水廠原為望塘污水處理廠三期工程,后因采用PPP模式建設,更名為合肥市清溪凈水廠,原望塘污水處理廠一期二期總規(guī)模18萬m3/d,占地約275畝地,而采用地埋式設計的清溪凈水廠暫占地僅90畝,除去深基坑以后,原設計上口僅南側和北側部分區(qū)域可修建臨時施工便道,其他位置尺寸不足3m,東西兩側上下通道外壁更是緊貼紅線設計,材料設備無法運送至施工部位。后經我單位參與設計優(yōu)化,通過將支護樁作為池壁外模板,縮小二級平臺,調整放坡比例、兩側車道延后施工等方法,實現(xiàn)箱體四周的連續(xù)環(huán)狀道路,打通了施工機械設備和材料運輸?shù)纳ǖ?,為施工提供有力的保障?/p>
本工程混凝土用量約15萬m3,鋼筋用量約1.8萬t,模板高達26萬㎡,腳手架高峰時期超過200萬m,周轉材料現(xiàn)場儲存場地、鋼筋、模板加工場地都要進行合理的規(guī)劃,為了更為合理的布置場地,發(fā)揮有限空間的吞吐能力,本項目采用BIM技術進行三維場地布置,所有加工機械,加工棚,結構、道路、周邊高壓線等均按1∶1比例制作模型,整合在一起進行布置,確保了布置的合理性。
在廠區(qū)布置時,同時兼顧了結構內的材料運輸,工程共布置6臺塔吊,為了保證塔吊的有效利用率,實現(xiàn)最大的覆蓋范圍,塔吊直接布置在箱體內,經驗算并與設計溝通后,利用箱體底板作為塔吊基礎,最終塔吊覆蓋面積可達箱體面積95%以上,由于是水工構筑物,頂部又做景觀綠化,結構每一層的梁板位置、尺寸均不一樣,同時還有管廊、渠道等,塔吊在布置時需要兼顧錯開,為了方便布置,防止出錯,塔吊布置我們也是利用BIM制作了信息化模型,將箱體模型、廠區(qū)模型、塔吊模型進行整合,通過三維可視化,一次性判斷塔吊與各層構配件的位置關系,將塔吊洞口設置在只有板結構的位置,同時規(guī)避掉廠區(qū)附近的高壓線、行道樹等,還可以模擬塔吊對加工廠成品區(qū)的覆蓋情況,使得塔吊布置十分合理。
(2)由于工程采用全地埋式設計,工程設計較為集約化,水處理構筑物、操作空間、地下交通、綜合管線均集中在一個地下箱體內部,埋設于地下,因此需要進行基坑支護,而且一般地埋式污水處理廠的基坑都具有面積大、深度深的特點,設計難度和施工難度都比較大。此外因污水處理構筑物隔墻多、渠道多、如果基坑采用內支撐設計,施工難度更大,格構柱、支撐梁與結構沖突很難避免。
昆山北區(qū)污水處理廠三期擴建工程,深基坑采用的是灌注樁+水泥攪拌樁+內支撐的形式,內支撐設計標高位于構筑物中板下3m位置,施工時,必須要解撐,如果要施工至撐下,等結構混凝土強度達到后,解撐,工期將會受到很大的影響,且未施工中板時外墻為懸臂結構,拆撐時對結構會產生很大的影響,設計上將底板外挑延伸至樁邊,作為置換支撐,底板混凝土強度達到70%后拆除支撐。雖然昆山問題得到解決,但其基坑深度較淺內支撐對地下箱體施工效率和安全的影響不容忽視,在基坑設計時,必須充分考慮箱體結構設計,考慮施工的順序,確定換撐方案。
清溪凈水廠項目采用的是咬合灌注樁+預應力錨索支護體系,有效避免了內支撐的影響,施工工序組織較為靈活,免去了拆撐的工序。
(3)土方工程量大,昆山半地埋式污水處理廠土方總量約20萬m3,合肥清溪凈水廠土方外運量高達70萬m3,尤其是國家環(huán)保督查越來越嚴格,土方外運將受到極大地限制,土方工程成為影響工期的較大因素。
尤其是清溪凈水廠2016年全年有效出土天數(shù)僅有85天,給工程進度帶來了很大的影響。
由于廠區(qū)占地面積小,地上空間有限,廠內臨時堆放土方,基本不可能,土方平衡無從談起,后期基坑和頂部填土還需要外購土方。我公司一方面從土方開挖方案,運輸通道上進行優(yōu)化,對土質較差的土體進行改良硬化,在僅有一個出口的情況下,最大單天出土量達1萬m3。另一方面在業(yè)主以及我單位的共同努力下,向環(huán)保、城管部門溝通,爭取出土時間,多方尋找棄土場,保證外運效率。
(4)因為集約化的設計,各水處理構筑物集中在一個箱體內部,需要分區(qū)施工,而各單體、各分區(qū)之間沒有過度空間,施工集中在一塊,施工相互干擾,且一般工期都較緊,材料運輸沖突,嚴重制約工程進度。
兩個水廠施工時,我們均利用結構施工縫、膨脹加強帶或者后澆帶對箱體進行分區(qū)施工,由于工程量較大,為了加快施工效率,一般都配備2到3家勞務作業(yè)隊伍進行施工,各個勞務作業(yè)隊伍之間往往互不相讓,在施工空間上、運輸設備上都爭搶不休。
(5)地埋式污水處理廠綜合管線包含工藝管道、通風、除臭、消防、給水、電纜橋架、加藥、照明等,同時很多地方需要設置起重設備,從設計角度的碰撞規(guī)避、施工工序的合理組織、各專業(yè)交叉施工要求很高。有些設備管道需要在土建施工過程中就提前就位或先放入單體。
綜合管線施工方面,利用BIM軟件進行碰撞分析,找出各管線之間以及其余結構之間的碰撞關系,本著小讓大,弱讓強的修改原則,在設計階段就予以規(guī)避,避免了后期大量變更改動給工期帶來的影響。在施工時各管線的施工順序要進行合理的安排,先下后上,先內后外,需要統(tǒng)籌管理,不能隨意施工。
(6)由于箱體全部設置在地下,箱體又是超長混凝土結構,易產生變形和收縮裂縫,混凝土抗?jié)B控制難度高,地下箱體的防水、防漏控制要求很高。
設計院為了消除滲水、漏水隱患,箱體構筑物一般盡量減少設置伸縮縫,而是采用膨脹加強帶或后澆帶的方式控制混凝土收縮裂縫。
昆山污水廠箱體混凝土地下部分為C30P8混凝土,地面上部為C40P8混凝土。清溪水廠采用的全部是C40P8混凝土。在混凝土裂縫控制上,嚴格按照大體積混凝土施工規(guī)范進行配合比設計和制定施工方案。通過添加微膨脹外加劑和抗裂纖維補償混凝土收縮和抗裂,增加粉煤灰用量降低水泥用量,減少水化熱。施工時,對混凝土進行測溫檢測,大體積混凝土預埋冷凝管,池壁模板根據測溫數(shù)據延緩拆模時間,而不是按照經驗拆除。在每一次施工分區(qū),一般控制寬度小于25m(單向)。然而最后還是沒有完全避免收縮裂縫的產生,分析歸類有以下三類:①采用C40混凝凝土較C30明顯偏多;②外墻在填土后產生裂縫;③構筑物與車道連接處混凝土外墻結束,改磚砌體變化位置放射性裂縫,經后期分析是由于剛性約束發(fā)生變化產生。建議設計上水平筋優(yōu)先考慮設置在立筋外側,施工時應嚴格控制混凝土保護層,外墻填土時分次回填,不得采用機械碾壓;在剛性約束發(fā)生變化的位置增加抗裂加強筋。
(7)由于地埋式臭氣需要收集處理,水處理構筑物基本上需要做封閉處理,有別于一般的敞口式污水廠,只是在一些必要的地方預留了一些檢修、吊裝孔,而二層的水處理構筑物高度高,周轉材料的消耗量非常大,混凝土完成后,周轉材料的拆除、轉運難度非常大,耗時費力。
通常在工期不夠用的情況下,箱體的模板和腳手架、方木等材料,難易實現(xiàn)大量周轉使用。待箱體主體完工時,一次性投入的大量材料拆除外運,將成為一大難題。主體施工期間應考慮拆除外運通道走向,應及時與設計溝通增加永久或臨時預留洞口設計,洞口預留位置考慮上下統(tǒng)一,避開隔墻,便于封堵且不影響主體結構質量和安全的原則,此種辦法能大大提高工作效率。
清溪凈水廠項目在我項目部合理組織下創(chuàng)下一個月歸還120萬米腳手架鋼管、60萬枚扣減,20萬個頂托的記錄,轉運出6萬㎡模板,得到業(yè)主的肯定與表揚。
(8)BIM技術應用輔助設計施工。我們兩個污水處理廠均應用了BIM技術,開工初期進行設計優(yōu)化與圖紙會審,解決綜合管線之間、管線設備與結構之間的沖突問題,成功規(guī)避掉了多項設計沖突,施工場地三維布置、優(yōu)化塔吊設置、地下障礙物分析等、后期利用三維算量軟件實現(xiàn)工程量的電算、利用模型進行三維技術交底、討論施工方案、施工進度模擬演示等
四、結束語
隨著國家對環(huán)保的重視以及老百姓環(huán)保意思的加強,地埋式污水處理廠將是今后大中型城市污水處理廠建設的主流,各方面的經驗也將越來越豐富,以上我的總結也是聆聽各界專家的意見后的一些體會,供大家參考。( >
如需要產品及技術服務,請撥打服務熱線:13659219533
選擇陜西博泰達水處理科技有限公司,你永遠值得信賴的產品!
了解更多,請點擊m.redpic.cn